PCR اختصاصی بر روی ژن مقاومت به زئوسین……………………………………………………………………35
کلون نمودن ژن zeocin در وکتور کلونینگ pGEM-T Easy………………………………………………….37
بررسی کلون های نوترکیب pGEM-zeo……………………………………………………………………………..38
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf………………………………………………39
هضم آنزیمی وکتور pHan-gcsf و pGEM-zeo……………………………………………………………………39
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی تیمار شده با آلکالین فسفاتاز pHan-gcsf………40
بررسی کلونهای نوترکیب pHan-gcsf-zeocin………………………………………………………………………41
انتقال پلاسمید نوترکیب pHan-gcsf-zeocin به سلول هانسونلا پلی مورفا…………………………………41
هضم آنزیمی وکتور بیانی pHan-gcsf-zeocin………………………………………………………………………41
الکتروپوریشن سلول های هانسونلا پلی مورفا………………………………………………………………………..42
تأیید کلونهای نوترکیب هانسونلا با روش Colony PCR اختصاصی ژن زئوسین………………………..43

در این سایت فقط تکه هایی از این مطلب با شماره بندی انتهای صفحه درج می شود که ممکن است هنگام انتقال از فایل ورد به داخل سایت کلمات به هم بریزد یا شکل ها درج نشود

شما می توانید تکه های دیگری از این مطلب را با جستجو در همین سایت بخوانید

ولی برای دانلود فایل اصلی با فرمت ورد حاوی تمامی قسمت ها با منابع کامل

اینجا کلیک کنید

بیان پروتئینGCSF در هانسونلا پلی مورفا…………………………………………………………………………..44
کشت سلولهای مخمری……………………………………………………………………………………………………..44
بررسی بیان پروتئین نوترکیب با روش SDS-PAGE………………………………………………………………44
تزریق نمونه پروتئینی به خرگوش………………………………………………………………………………………..45
ایمونوبلاتینگ…………………………………………………………………………………………………………………..46
فصل سوم نتایج
سنتز ژن gcsf…………………………………………………………………………………………………………………..49
PCR اختصاصی بر روی ژن gcsf………………………………………………………………………………………49
طراحی پرایمر های اختصاصی ژن gcsf……………………………………………………………………………….49
بهینه سازی واکنش PCR برای ژن gcsf……………………………………………………………………………….50
کلون نمودن ژن gcsf در وکتور بیانی هانسونلا………………………………………………………………………51
هضم آنزیمی وکتور کلونینگ pGH-gcsf و وکتور بیانی pHan……………………………………………….51
بررسی کلونهای نوترکیب pHan-gcsf…………………………………………………………………………………52
بررسی کلونها به روش سریع……………………………………………………………………………………………..52
انجام PCR ژن gcsf بر روی پلاسمید نوترکیب pHan-gcsf……………………………………………………52
هضم آنزیمی وکتور تأیید شده pHan-gcsf…………………………………………………………………………..53
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf……………………………………………..54
PCR اختصاصی بر روی ژن مقاومت به زئوسین (Sh ble)…………………………………………………….54
کلون نمودن ژن zeocin در وکتور کلونینگ pGEM-T Easy………………………………………………….55
تأیید کلون های نوترکیب pGEM-zeocin……………………………………………………………………………55
بررسی سریع کلونهای نوترکیب…………………………………………………………………………………………..55
هضم آنزیمی پلاسمید نوترکیب pGEM-zeo با BglII……………………………………………………………56
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf………………………………………………57
بررسی کلونهای نوترکیب pHan-gcsf-zeocin……………………………………………………………………57
بررسی سریع کلونهای نوترکیب…………………………………………………………………………………………..57
بررسی کلونها به روش Colony-PCR…………………………………………………………………………………58
برش آنزیمی وکتور نوترکیب pHan-gcsf-zeo………………………………………………………………………58
انتقال پلاسمید نوترکیب pHan-gcsf-zeocin به سلول هانسونلا پلی مورفا…………………………………59
هضم آنزیمی وکتور بیانی pHan-gcsf-zeocin و انتقال به سلول هانسونلا………………………………….59
تأیید کلونهای نوترکیب هانسونلا با روش Colony-PCR ژن زئوسین……………………………………….59
بیان پروتئینGCSF در هانسونلا پلی مورفا………………………………………………………………………….60
تأیید پروتئین نوترکیب تولید شده با روش Immuno-Blotting……………………………………………….61
فصل چهارم :بحث و پیشنهادات
رویکرد کلی پژوهش…………………………………………………………………………………………………………63
فصل پنجم : منابع و پیوست
فهرست منابع و مواخذ……………………………………………………………………………………………………….66
پیوست‌ها…………………………………………………………………………………………………………………………75
مقدمه
تولید پروتئین های نوترکیب یک بازار میلیارد دلاری دارا می باشد. از طرف دیگر تولید یک محصول نوترکیب جدید با انتخاب یک میزبان مناسب شروع می شود. در میان سیستم های بیانی مختلف، سلولهای مخمری به عنوان تک سلولی های تولید کننده با ویژگی دستکاری های ژنتیکی ساده و داشتن مسیرهای ترشحی اختصاصی که در تولید پروتئین کامل و فعال و انتقال آن به خارج از سلول مؤثر می باشند، یکی از بهترین انواع سیستم های شناخته شده می باشند. ساکارومیسس سرویزیه، پیکیا پاستوریس و هانسونلا پلی مورفا در اکثر مطالعات به عنوان سلولهای مخمری میزبانی مورد استفاده قرار گرفته اند که دارای مسیر مشترک بیوشیمیایی در متابولیسم متانول می باشند. در حال حاضر تکنولوژی هانسونلا به دلیل میزان بیان بالا مورد توجه جهانی قرار گرفته است. از جمله اقلام دارویی تولید شده در این سلولها میتوان به واکسن هپاتیت B، انسولین و اینترفرون آلفا و بتا اشاره نمود.
هدف از این مطالعه ، استفاده از وکتور بیانی طراحی شده جهت بیان فاکتور رشد کلنی گرانولوسیتی (GCSF) نوترکیب به عنوان پروتئین کاندید می باشد.
مواد و روش ها
cDNA کد کننده ژن فاکتور محرک رشد کلونی گرانولوسیتی در وکتور بیانی طراحی شده مربوط به هانسونلا پلی مورفا که شامل پروموتر، توالی سیگنال پپتید، توالی خاتمه دهنده رونویسی و شاخص انتخابی اوکسوتروفی می باشد کلون گردید و بدین ترتیب وکتور بیانی مورد نظر ساخته شد. هضم های آنزیمی به منظور تأیید قطعات کلون شده در وکتور بیانی طراحی شده انجام شد. القاء بیان پروتئین نوترکیب در این سیستم با متانول صورت گرفت و ایمونوبلاتینگ جهت تأیید پروتئین تولید شده نوترکیب صورت گرفت.
نتایج
ماهیت توالیهای کلون شده در وکتور بیانی از طریق هضم های آنزیمی با استفاده از سایتهای طراحی شده در توالی سنتز شده و مشاهده قطعات مورد نظر در ژل آگارز ارزیابی شد. وکتور نوترکیب به فرم خطی با روش الکتروپوریشن به سلول مستعد هانسونلا پلی مورفا انتقال داده شد و القاء بیان پروتئین با متانول صورت پذیرفت. پروتئینی حدوداً 20 کیلو دالتونی بر روی ژل SDS-PAGE مشاهده گردید که با ایمونوبلاتینگ پروتئین تولید شده به عنوان GCSF تأیید شد.
بحث
پروتئین تولید شده با روش بلاتینگ تأیید گردید. در ادامه بایستی عملکرد این پروتئین در واکنشهای ایمونولوژیکی مورد بررسی قرار گیرد. از طرف دیگر عملکرد این پروتئین در مقایسه با فرم تولید شده در E. coli مقایسه شود.
کلید واژه ها
هانسونلا پلی مورفا، فاکتور محرک رشد کلونی گرانولوسیتی (GCSF)، مهندسی ژنتیک
فصل اول : مقدمه
در طول چند دهه اخیر به سه دلیل زیر مطالعات زیادی بر روی مخمر هانسونلا پلی مورفا صورت گرفته است:
1. رشد سریع این مخمر با مصرف متانول به عنوان تنها منبع کربن و انرژی،
2. تحمل دماهای بالا (توانایی رشد در دمای °C49)،
3. تبادل آسان محتوای ژنتیکی بین سلولهای هاپلوئید و دیپلوئید ( (Teunisson, 1960.
1-1میکروبیولوژی هانسونلا
این مخمر برای اولین بار در سال 1951 از آب پرتقال حاوی 50% قند در فلوریدای آمریکا جداسازی شد.
سلولهای هانسونلا به هر دو صورت سلولهای دیپلوئیدی و هاپلوئیدی رشد می کنند. کلنی ها بر روی محیط کشت جامد دارای طیف رنگی صورتی هستند که به علت آسکوسپورها می باشد. کلنی سلولهای هاپلوئیدی و دیپلوئیدی از نظر رنگ، اندازه، چیدمان سلولی و سایر ویژگیها با یکدیگر متفاوت می باشند.
تاکنون اطلاعاتی در مورد توانایی هانسونلا پلی مورفا در تشکیل میسلیوم کاذب پیدا نشده است (Teunisson, 1960; Wickerham, 1970).
شکل 1-1 مخمر H. polymorpha
هانسونلا پلی مورفا میتواند در دمای بالا و در °C42 رشد کند. به نظر می رسد در این مخمر سنتز تره هالوز قسمتی از پاسخ به قحطی منبع کربن و شوک حرارتی است و پیشنهاد شده که این ترکیب، فاکتور مهمی در مقاومت دمایی است (Reinders, 1999).
مطالعات انجام شده بر روی هانسونلا پلی مورفا به طور عمده به بررسی پروتئین های سلولی، ساختار سلولهای مخمر در حال رشد و یا بررسی متابولیسم مخمر پرداخته اند.
در سویه هایی از این مخمر که از متانول به عنوان منبع انرژی استفاده می کنند، آنزیمهای متانول اکسیداز و کاتالاز، به فرم کریستالی درون اندامکی به نام پراکسی زوم قرار گرفته اند (Van Dijken, 1975).
هانسونلا پلی مورفا بعنوان یک ارگانیسم متیلوتروف، یک مدل مطلوب برای تحقیق در مورد عملکرد پراکسی زم ها و تکامل حیات می باشد. همچنین به منظور بررسی ژنتیکی جنبه های مختلف متابولیسم سلولی از جمله متابولیسم متانول، جذب نیترات و مقاومت به فلزات سنگین مورد مطالعه قرار می گیرد ( (Mannazzu, 2000.
با وجود این ویژگیها، هنوز قابلیت های ژنتیکی و طبیعی سویه های مورد استفاده از این مخمر کاملاً مشخص نیست و کنترل ژنتیکی فرایندهای سلولی پایه از جمله کنترل تقسیم سلولی، تولید مثل و اسپورزایی هنوز با سؤالات زیادی مواجه می باشد.
با اینحال هانسونلا پلی مورفا به عنوان یک میزبان برای تولید پروتئین های خارجی(ترشحی به خارج از سلول) توجه زیادی را به خود جلب کرده است ( (Gellissen, 2000.
1-2مطالعات ژنتیکی
تحقیقات ژنتیکی تاکنون تنها بر روی سه سویه از این مخمر انجام شده است که شامل سویه های DL-1، CBS 4732 و NCYC 495 می باشند.
پیدایش سویه های هانسونلا پلی مورفا از سویه های جهش یافته اکسوتروف شروع شده است.این موتانت ها از سویه هایی که در بالا نام برده شد با استفاده از ترکیب شیمیایی N-متیل-N-نیترونیتروزو گوانیدین1 یا اتیل متان سولفونات به دنبال یک مرحله غنی سازی با نیستاتین به دست آمده اند.
از طرف دیگر اشعه ماوراء بنفش نیز یک موتاژن بسیار قوی است که طیف موتانت های ایجاد شده بوسیله آن در مقایسه با موتانت های حاصل از مواد شیمیایی متفاوت و گسترده تر می باشد (Roggenkamp, 1986).
بطور کلی فرایندهای جهش زایی متعددی در این مخمر انجام شده است که یکی از این فرایندها، جهش های ژنتیکی است که منجر به سنتز اسیدآمینه های آروماتیک می شود که به مخمر اجازه رشد در محیط غنی YPD را نمی دهند (Krappmann, 2000).
از جمله انواع جهش یافته های اکسوتروف میتوان به موارد زیر اشاره نمود:
1. سویه هانسونلا پلی مورفای جهش یافته ای که برای رشد بر روی محیط های معدنی الزاماً به ریبوفلاوین نیاز دارد و محدود نمودن منبع ریبوفلاوین تأثیر شدیدی بر روی سنتز مجموعه الکل اکسیداز و تکثیر پروکسی زومهای سلولی دارد (Evers, 1994).
2. نوع دوم جهشهای ایجاد شده در ژن FAD1 است که اسید چرب دلتا2 را کد می کند. کاربرد این سلولهای جهش یافته در بررسی ژنتیکی سنتز اسیدهای چرب غیراشباع می باشد ( (Anamnart, 1998.
تحقیقات اخیر نشان داده است که هانسونلا پلی مورفا میتواند برای بررسی مقاومت به فلزات سنگین مورد استفاده قرار گیرد چراکه توانایی رشد در حضور تجمع فلزات سنگین متفاوت را که برای سایر موجودات سمی است دارا می باشد (Mannazzu, 1997).
در طی رشد در محیط حاوی vanadate، سلول ها افزایش قابل توجهی از پلی فسفات های واکوئلی پیدا میکنند. احتمالاً نقش این واکوئل ها در فعال کردن مکانیسم های اتوفاژی است که شاید برای جبران کمبود مواد مغذی و یا حذف ساختارهای سلولی ناهنجار القاء شده توسط این یون فلزی لازم باشند (Mannazzu, 1998).
سلول های هانسونلا پلی مورفا در مقایسه با S. cerevisiae به یون های کادمیوم(cd2+) بسیار مقاومند )این مقاومت به شدت به ماهیت منبع کربن استفاده شده بستگی دارد. سلول ها اغلب زمانیکه بر روی محیط حاوی گلوکز رشد میکنند به کادمیم مقاومتراند اما در طی رشد بر روی محیط حاوی متانول، به عنوان منبع کربن و انرژی، به این یون بسیار حساس می باشند. سویه های جهش یافته مقاوم به کادمیوم به سه گروه cds1، cds2 و cds3 تقسیم میشوند ( (Lahtchev, unpublished data.
جهش در ژنهای کدکننده آنزیم های پراکسی زومی یا سیتوپلاسمی درگیر در متابولیسم متانول
ژن AOX1 (MOX)، کدکننده آنزیم الکل اکسیداز (AO) موجود در ماتریکس پروکسی زوم است و یکی از بهترین ژن های هانسونلا پلی مورفا در تحقیقات می باشد (Ledeboer, 1985). الکل اکسیداز یک آنزیم فلاووهومواکتامری است که اولین مرحله در متابولیسم متانول را کاتالیز میکند. مونومر این آنزیم در سیتوپلاسم سنتز شده و به صورت هومواکتامر فعال، تجمع یافته و در داخل پراکسی زوم قرار میگیرد. حدود 210 نوع جهش یافته از ژن AO وجود دارد ( (Titorenko, 1995. بیان این ژن در مرحله رونویسی تنظیم میشود.
شکل 1-2 مورفولوژی سلولهای H. polymorpha جهش یافته
در هانسونلا پلی مورفا وقایع مربوط به مهار و القاء ژنهای کد کننده آنزیم های اختصاصی متانول و یا آنزیمهای پراکسی زومی به شدت کنترل می شوند. تنظیم در سطح رونویسی با مکانیسم های کنترلی قابل ملاحظه ای انجام میشود. عناصر تنظیمی به فرم سیس3 در بالادست ژنهای DAS، CAT4 و FMD5 با نقش مهاری برای گلوکز شناسایی شده اند.
1-3 نقشه ژنتیکی
آنالیز تتراد در هانسونلا پلی مورفا امکان پذیر است اما اندازه کوچک اسپورها روند این آنالیز را کند می نماید. در کشت سلول های دیپلوئیدی تفکیک مندلی نرمال در مورد بیشتر مارکرهای ژنتیکی مشاهده شده است.
الکتروفورز DNA کروموزومی هانسونلا پلی مورفا به روش pulse field، 3 تا 7 باند را نشان داده است که به نوع سویه وابسته است (Mari, 1993)اما بطور کلی مشخص شده است که هانسونلا پلی مورفا حداقل 7 کروموزوم دارد که بعضی از آنها مضاعف (دو تایی) هستند (Naumov, 1992).
1-4 تولیدمثل و اسپورزایی
فاکتورهایی در تولیدمثل و اسپورزایی هانسونلا پلی مورفا درگیرند که هنوز بطور کامل شناسایی نشده اند. از القاء کننده های قوی تولیدمثل جنسی میتوان به مالتوز، گلیسرول و سوربیتول اشاره کرد (Lahtchev, unpublished data).
سلول های هاپلوئید بر اساس نوع فنوتیپشان به چهار گروه تقسیم میشوند:
سویه های گروه 1 و 2 میتوانند هیبریداسیون متقاطع6 داشته باشند. این سویه ها سریع الرشد و تهاجمی بوده و پس از گذشت یک روز در محیط انتخابی، دیپلوئیدی می شوند. سویه های گروه 3 توانایی جفتگیری با اعضای گروه 1 و 2 را دارند و سویه های مثبت (+) نامگذاری می شوند. سویه های گروه 4 تنها میتوانند با گروه مثبت جفتگیری کنند و گروه منفی (-) را تشکیل دهند.
1-4-1 اسپورزایی
در هانسونلا پلی مورفا سلولهای هاپلوئیدی توانایی اسپورزایی دارند. اسپورزایی هاپلوئیدها بعد از گذشت 8 روز در محیط حاوی 3% مالتوز در دماهای پائین قابل تشخیص است. اسپورزایی با ظاهر شدن کلنی های دیپلوئیدی به رنگ صورتی روشن همراه می باشد.
در اواخر دهه 1960 کشف شد که مخمرها توانایی رشد بر روی محیط حاوی متانول به عنوان منبع کربن و انرژی را دارند (Ogata, 1969). اخیراً در تحقیقات پایه، متیلوتروف ها به عنوان منبع پروتئین های تک سلولی7 (SCP) ((Cooney and Levine, 1976) و آنزیم های غیرمعمول و متابولیت ها توجه بسیاری را به خود جلب کرده اند. با استفاده از روشهای جدید کلونینگ، ژن های کد کننده آنزیم های کلیدی در متابولیسم متانول شناسایی شده اند (Wegner, 1990).
پروموترهای MOX و FMD بعد از القاء، بسیار قوی عمل می نمایند. این مطلب با مشاهده میزان بالای بیان محصولات تحت تأثیر این پروموترها قابل انتظار است.
این یافته ها استفاده از هانسونلا پلی مورفا، به عنوان یک میزبان مناسب برای بیان به میزان زیاد ژنهای هترولوگ با استفاده از این پروموترها، به عنوان اجزاء کنترل کننده بیان، را قابل قبول نماید (Roggenkamp, 1984; Hollenberg and Janowicz, 1988).
سیستم بیانی شامل هانسونلا پلی مورفا سویه RB11 و پلاسمیدهای حاوی توالی های URA3و HARS18 است که به دنبال هم قرار گرفته اند. استفاده از پروموترهای FMD یا MOX و ترمیناتور MOX همراه با جایگاههای برش آنزیمی کوتاه مربوط به کلونینگ9 (MSC) بین این دو واحد، کلونینگ و بیان ORF10های هترولوگ را ممکن ساخته است.
آنالیز سویه های بیانی، پایداری میتوزی قابل توجه پلاسمید های الحاق شده به درون ژنوم را نشان می دهد که در بعضی موارد بیانگر سرعت بیان بالای ORF هترولوگ می باشد.
از طرف دیگر، سویه RB11، اغلب دستکاری های ژنتیکی به صورت نوترکیبی را به راحتی نمی پذیرد که شاید ناشی از پایداری میتوزی فوق باشد. به نظر می رسد سویه DL-1 نسبت به سویه RB11 توانایی پذیرش بیشتری را دارد (Gellissen, 1992).
1-6 پروموترهای مورد استفاده در سیستم های بیانی هانسونلا پلی مورفا RB11
یکی از پروموترهای مورد استفاده برای تولید پروتئینهای هترولوگ در هانسونلا پلی مورفا سویه RB11، پروموتر ژن MOX می باشد که طول آن بیش از 5/1 کیلوباز بوده و در حضور منبع کربن تنظیم می شود. به این صورت که در حضور گلوکز، پروموتر MOX مهار می شود ولی در حضور متانول، القاء می گردد.
پروموتر سایر ژن های کدکننده آنزیم های کلیدی در کاتابولیسم متانول از جمله FMD، DAS و CAT نیز مشابه با پروموتر ژن MOX کنترل می شوند اما سطح تنظیمی بعضی از آنها همچون CAT مشخص نیست (Veenhuis, 1983).
اگرچه پروموترهای FMD و MOX به طور واضحی مقایسه نشده اند اما بعضی مقایسه ها نشان داده است که مزایای پروموتر FMD از پروموتر MOX بیشتر است. بعنوان مثال، هانسونلا پلی مورفا سویه RB11 بیان کننده ژن فیتاز تحت کنترل پروموتر FMD، بازده زیادی در تخمیر در شرایط قحطی گلوکز دارد.
1-6-1 HARS1
پلاسمیدهای بیانی مورد استفاده در هانسونلا پلی مورفا سویه RB11 دارای عنصر HARS1 به طول تقریبی 5/0 کیلوباز می باشند. این قطعه ژنی در سالهای اخیر در طراحی وکتورهای مناسب برای انتقال به هانسونلا پلی مورفا مورد توجه قرار گرفته است Roggenkamp, 1986)). پلاسمیدهای حامل توالی HARS1 در 30-20 نسل ابتدایی رشد سلولها به صورت اپی زومال باقی می مانند اما پس از آن در ژنوم سلول مزبان به صورت تکرارهای متوالی به تعداد زیاد الحاق می شوند. این در حالی است که ناحیه ای که این پلاسمیدها دقیقاً در ژنوم ادغام می شوند هنوز مشخص نیست Gellissen, 1990)). چهار عنصر دیگر از خانواده قطعه ژنی HARS در سویه های DL-1 به دست آمده است اما تعداد کپی آنها از تعداد عناصر HARS1 در سویه RB11 کمتر است.
جزئیات مکانیسم ادغام شدن پلاسمیدهای حاوی توالی HARS1 در ژنوم این مخمر هنوز مشخص نیست. تنها ویژگی شناخته شده، توانایی ادغام شدن به صورت توالیی تکراری و غیرتصادفی است که قسمت خاصی از ژنوم را انتخاب می کند (Sohn, 1996).
شکل 1-3 تصویر پلاسمید بیانی مخمر H. polymorpha
1-7 بیان همزمان11:
با چنین سیستم هایی، مجموعه های پروتئینی هترومری تولید می شود. یک مثال قابل توجه از این نوع بیان، بیان همزمان آنتی ژن های S و Lویروس هپاتیت B است.
از دیگر موارد بیان همزمان میتوان به بیان ژن های کد کننده گلیکولات اکسیداز (GO) اسفناج و کاتالاز (CTT1) T ساکارومیسس سرویزیه در هانسونلا پلی مورفا اشاره نمود.
بیان، پردازش، تغییر و تبدیل و یا ترشح مؤثر پروتئینهای نوترکیب خاص در هانسونلا پلی مورفا ممکن است دچار تغییر شود. این محدودیت می تواند با بیان همزمان ژن مورد نظر با یک ژن دوم (یا بیش از یک ژن دیگر) برطرف شود به همراه می آورد. به عنوان مثال فرآیند پردازش نادرست اینترفرون آلفا 2a، می تواند با بیان همزمان ژن KEX2 ساکارومیسس سرویزیه بهبود یابد.

1-8 ترشح پروتئین های هترولوگ الیگومری و فعال
هانسونلا پلی مورفا مقدار کمی پروتئین درونی (خودی) ترشح می کند و در نتیجه این ویژگی، پروتئین های هترولوگ ترشح شده به محیط کشت، عموماً خالص هستند. بنابراین استفاده از این میزبان بیانی، روش مناسبی جهت تولید پروتئین های نوترکیب خارجی به فرم محلول می باشد. ترشح پروتئین ها توسط توالیهای نشانه (سیگنال) قابل جداسازی انجام می شود. اگرچه گاهاً مستقل از سیگنال ترشحی، در مواردی ترشح خودبخودی پروتئین هترولوگ نیز مشاهده شده است (Gellissen, 2000).
برای درک توانایی هانسونلا پلی مورفا در تولید و ترشح پروتئین های هترولوگ، سویه هایی از این مخمر به منظور ترشح الکل اکسیداز (AOX) مهندسی گردیدند. الکل اکسیداز، یک پروتئین هومواکتامر کوفاکتوری است که هر زیرواحد آن دارای یک مولکول FAD12 می باشد (van der Klei et al, 1991). زمانیکه هانسونلا پلی مورفا بر روی محیط حاوی متانول رشد می کند فعالیت پروتئین AOX در ماتریکس پراکسی زومی، جائیکه اکثر پروتئین های اصلی وجود دارند، محدود می شود.
از طرف دیگر، برای فهم چگونگی ترشح الکل اکسیداز، سویه هایی از هانسونلا پلی مورفا مهندسی گردید که ژن اندوژن AOX با ژن AOX به دنبال سیگنال ترشحی در انتهای N، جایگزین شد. به دنبال کشت این سویه در محیط کشت حاوی متانول، حضور AOX فعال شناسایی گردید که این بیان نشان می دهد هانسونلا پلی مورفا قادر به تولید و ترشح کمپلکسهای پروتئینی دارای کوفاکتور و ساختارهای الیگومری می باشد (van der Heide and Veenhuis, Unpublished results).

1-9 تولید واکسن نوترکیب
در بسیاری از کشورها واکسن های علیه هپاتیت در اوایل دهه 1980 در دسترس عموم قرار گرفت. این واکسن ها با جداسازی آنتی ژن HBs13 از سرم افراد ناقل تولید شده بود که اگرچه مؤثر بودند اما به دلیل مشتق شدن از سرم، گران بوده و مدت زمان کوتاهی به سیستم ایمنی عرضه می شوند. به همین دلیل، تولید آنتی ژن HBS هترولوگ در سیستم های بیانی مختلف از جمله مخمر، باکتری، سلولهای گیاهی یا جانوری و نیز حیوانات تراریخته توسعه پیدا نمود. (Billman-Jacobe, 1996, Makrides, 1996).

1-10 مخمرها به عنوان میکروارگانیسم های تولیدی
سیستم های مخمری دارای مزایایی از جمله توانایی دستکاری ژنتیکی آسان، فرآیند های پس از ترجمه یوکاریوتی با میزان بالای تولید محصول و فرآیندهای تخمیری ارزان قیمت هستند. بنابراین تعجب آور نیست که ساکارومیسس سرویزیه به عنوان یکی از میزبانهای مطلوب در تولید پروتئین های هترولوگ شناخته شده است (Hinnen et al, 1995; Barr et al, 2000).
تاکنون دو روش در سیستم بیانی هانسونلا پلی مورفا به منظور تولید زیرواحدهای adw2 و adr از آنتی ژن HBs ابداع شده است که یکی از آنها توسط سازمان بهداشت جهانی (WHO) تأیید شده است (Gregg et al, 1985; Gregg and Madden, 1987).
1-10 ساخت سویه هانسونلا پلی مورفا بیان کننده آنتی ژن HBs
به طور کلی تولید سویه های هانسونلا پلی مورفا نوترکیب نیازمند دنبال کردن پروتکل استاندارد زیر است:
1. تولید کاست بیانی و وکتور پلاسمیدی
2. انتقال وکتور طراحی شده به سلول هانسونلا پلی مورفا
3. جداسازی سویه های نوترکیب
1-10-1 تولید کاست بیانی و وکتور پلاسمیدی
تولید سویه H415 بیان کننده آنتی ژن HBs بوسیله گروهی از محققین یک مثال از این فرآیند است. توالی کدکننده آنتی ژن به طول 683 نوکلئوتید از پلاسمید pRIT10616 جدا گردید (Harford et al, 1987) و قطعه پروموتریMOX به عنوان سیگنال برای رونویسی از ژن MOX هانسونلا پلی مورفا مشتق شد (Ledeboer et al, 1985; Eckart 1988). این سه عنصر ترکیب شده و قطعه MOX promoter-HBsAg gene-MOX terminator را تشکیل می دهند که اساس کاست بیانی می باشند (Stinchcomb et al, 1980). سپس این کاست دارای عملکرد بیانی درون وکتور پلاسمیدی حاوی عناصر زیر قرار داده شد. ژن مقاومت به کلرامفنیکل به منظور تکثیر در باکتری E. coli، توالی همانند سازی هانسونلا پلی مورفا (HARS1) و ژن URA3 از ساکارومیسس سرویزیه به عنوان مارکر انتخابی14 در بررسی انتقال پلاسمید به هانسونلا پلی مورفا می باشند.
پلاسمیدهای دارای توالی HARS1 توانایی بالایی برای ادغام در ژنوم میزبان دارند. امروزه سویه هایی شناسایی شده که دارای بیش از 60 کپی از کاست بیانی خارجی اند که این مطلب به دلیل وجود این توالی می باشد.

1-11 انتقال (ترانسفرم) وکتورهای بیانی به هانسونلا پلی مورفا
1-11-1 روش پلی اتیلن گلیکول
پلاسمیدpRBS-269 با استفاده از روش پلی اتیلن گلایکول به سویه RB10 انتقال یافت و برای مشخص شدن ادغام پلاسمید به درون ژنوم، غربالگری صورت گرفت (Gregg et al, 1985).
تاکنون چندین سویه ترانسفرم شده با کاست های بیانی الحاقی بطور پایدار تولید شده است و سویه H415 یکی از این سویه هاست که برای بیان آنتی ژن HBs تحت شرایط خاص مورد آزمایش قرار گرفته است (Janowicz et al, 1991).

1-12 جداسازی سویه های نوترکیب
تشخیص بیان پروتئین با رشد سویه های ترنسفورم شده بر روی محیط های تقریباً مغذی حاوی گلوکز، گلیسرول و یا متانول بررسی می شود. در این راستا، مقدار آنتی ژنHBs تولید شده در این سیستم بیانی در مقایسه با مقدار استاندارد آنتی ژن خالص با روش ایمونوبلاتینگ کمی اندازه گیری شد. میزان تولید د ر سویه H415 در محیط کشت حاوی متانول mg100 بود. زمانیکه سلول ها در محیط حاوی گلیسرول قرار گرفتند سنتز آنتی ژن HBs 70% کاهش پیدا کرد و زمانیکه سلول ها به محیط حاوی گلوکز منتقل شدند آنتی ژنی تولید نگردید که این مطلب نشان دهنده تولید این آنتی ژن به طور طبیعی تحت کنترل ژن MOX میباشد (Rutgers et al, 1988).
1-13 تنظیم متابولیسم متانول
تنظیم آنزیم های احیاکننده15 به روش مهاری و نه القاء صورت می پذیرد. در طی فرایند رشد، در شرایط کمبود گلوکز این آنزیم ها افزایش پیدا می کنند (Egli, 1980). تجزیه و تحلیل منطقه پروموتر ژن کد کننده AOD نشان داده است که در H. polymorpha بیان ژن MOX نیز توسط یک مکانیسم مهاری تنظیم می شود (Roggenkamp, 1984; Sakai and Tani, 1992).
1-14 فاکتور محرک رشد کلنی گرانولوسیتی16 (G-CSF)
در دهه 60 میلادی، دو گروه به طور همزمان روش هایی را برای توسعه و بهبود رشد کلنی های گرانولوسیتی و مونوسیتی مغز استخوان موش و یا سلول های طحال بر روی آگار نیمه جامد مورد بررسی قرار دادند. رشد کلنی این سلولها به حضور فاکتورهایی بستگی دارد که اصطلاحاً آنها را فاکتورهای محرک رشد کلنی(CSF) می نامند. تلاش برای شناخت بیولوژیکی و بیوشیمیایی این محرکها آزمایشگاههای زیادی را تا اواسط دهه 80 میلادی درگیر کرده بود (Metcalf, 2010). این تحقیقات نشان دادند که CSF ها عملکردی اختصاصی و مجزا ندارند بلکه چهار CSF که از نظر بیوشیمیایی کاملاً متفاوت هستند با هم همکاری می کنند. این چهار CSF با توجه به نوع فعالیت شان بر روی کلنی های متفاوت، نامگذاری شدند. به طور مثال GM-CSF که محرک رشد کلنی ماکروفاژها و گرانولوسیت ها می باشد.M-CSF محرک تولید کلنی ماکروفاژها و G-CSF محرک رشد کلنی گرانولوسیتی می باشد.
1-15 ژن gcsf
این ژن بر روی کروموزوم 17 قرار گرفته و دارای 4 اینترون است. دو نوع پلی پپتید متفاوت در نتیجه پردازش های مختلف از این ژن ایجاد می شود. تفاوت این دو پلی پپتید در وجود و یا عدم وجود 3 اسید آمینه می باشد. مطالعات انجام گرفته بر روی بیان این دو نشان می دهد که هر دوی آنها دارای فعالیت های مربوط به GCSF می باشند.
1-16 پروتئین GCSF
فاکتور محرک رشد کلنی گرانولوسیتی (GCSF)که فاکتور محرک کلنی317 هم نامیده می شود، یک سیتوکین وهورمون محرک رشد و دارای 175 اسید آمینه می باشد. گلیکوپروتئین های طبیعی انسانی در دو فرم وجود دارند. 174 آمینو اسیدی و 180 آمینو اسیدی که پروتئینی طویل با وزن مولکولی 19600 دالتون می باشد. فرم 174 آمینو اسیدی بیشترین فعالیت را دارد که در محصولات دارویی به کمک تکنولوژی DNA نوترکیب ساخته می شود. این فاکتور در بافت های مختلف اثربخشی خود را از طریق تحریک مغز استخوان برای ساخت گرانولوسیت و سلولهای بنیادی انجام می دهد.GCSF همچنین توسط اندوتلیوم، ماکروفاژها و تعدادی از سلولهای ایمنی تولید می شود.

شکل 1-4 ساختار کریستالی از 3 مولکول G-CSF انسانی
1-17 عملکرد پروتئین GCSF
G-CSF مغز استخوان را برای انتشار گرانولوسیت و سلولهای بنیادی در خون تحریک می کند. این پروتئین همچنین باعث تحریک بقاء، تکثیر، تمایز و عملکرد پیش سازه های نوتروفیلی و نوتروفیل های بالغ می شود که تنظیم این واکنش ها از طریق Janus kinase (JAK)، مبدل سیگنال و فعال کننده رونویسی STAT، پروتئین کیناز میتوژنی فعال (MAPK) و فسفاتیدیل اینوزیتول-3-کیناز انجام میشود.
شکل 1-5 مکانیسم عملکرد GCSF

گیرنده های GCSF بر روی سلول های پیش ساز مغز استخوان قرار دارند و در پاسخ به GCSF تحریک می شوند و این باعث رشد و تمایز این سلول ها به گرانولوسیت بالغ می شود. این پروتئین همچنین یک القاء کننده قوی برای انتقال سلول های بنیادی خون ساز هماتوپویتیک از مغز استخوان به درون خون می باشد (Wonganu, 2008).
GCSF همچنین محرک تولید گلبولهای سفید خون نیز می باشد و در انکولوژی و هماتولوژی، در بعضی سرطان های خاص برای افزایش سرعت بهبودی افراد نوتروپنی بعد از شیمی درمانی از شکل نوترکیب آن استفاده می شود. شیمی درمانی سبب تولید سطح غیر قابل قبول (کم) سلولهای سفید خون می شود که این مورد بیماران را در مقابل حملات میکروبی و عفونت ها حساس می نماید.
به نظر میرسدGCSF برای یک بارداری امن در طی مرحله لانه گزینی مؤثر باشد که این امر در بارداری های دوم و سوم بیشتر می شود (Strife, 2013).
در کنار تاثیر بر روی سیستم خون سازی، GCSF همچنین می تواند بر روی سلول های عصبی به عنوان مثال فاکتور نوتروفیک تأثیر بگذارد. در واقع گیرنده های این گلیکوپروتئین بر روی نورون های مغز و نخاع ظاهر می شوند (Cooper, 2011).
همچنین از GCSF برای درمان تخریب بافت قلب از طریق تزریق در خون محیطی به همراهSDF stromal) (cell-derived factor استفاده می شود (Anderlini, 2005) .
امروزهGCSF نوترکیب انسانی در سیستم بیانی باکتری E. coli تولید می شود که با نام فیلگراستیم شناخته شده است. فیلگراستیم از لحاظ ساختاری تفاوت کمی با گلیکوپروتئین طبیعی GCSF دارد. فیلگراستیم (Neupogen) و فیلگراستیم پگیله شده (Neulasta) (PEG-filgrastim) دو نوع تجاری متداول فرم نوترکیب GCSF انسانی rhG-CSF هستند. فرم پگیله، نیمه عمر طولانی تری دارد و این موضوع سبب کاهش ضرورت تزریق روزانه این دارو می شود.
شکل دیگر GCSF نوترکیب انسانی در سلولهای تخمدان هامستر چینی (CHO cells) ساخته می شود که با نام لنوگراستیم شناخته می شود. از آنجا که این سیستم بیانی در سلول پستانداران می باشد، لنوگراستیم تولیدی تفاوت بسیار کمی (غیر قابل تشخیص) در 174 آمینو اسید با GCSF طبیعی انسان دارد.
برای اولین بار در سال 1999 در آکادمی بیوتکنیک چین، ژنوم انسان به عنوان رشته الگو برای کلونینگ و بیان GCSF در غدد پستانی موش استفاده شد و قطعه ای به طول 5/1 کیلوباز با PCR بدست آمد(Lu, 1999).
در سال 2009 محققین به بیان پروتئین نوترکیب GCSF در مخمرPichia Pastoris پرداختند که نتیجه این تلاش بیان این پروتئین تحت پروموتور AOX1 بوده که در نتیجه القاء با متانول میزان پروتئین شده به 2 میلی گرم در لیتر رسید (Apte-Deshpande, 2009).
در سال 1387 محققین ایرانی به جهش زایی هدفمند در فاکتور محرک رشد کلنی گرانولوسیت انسانی و کلونینگ و بیان آن در باکتری E. coli پرداختند و نتایج آنها نشان داد که پروتئین نوترکیب مورد نظر با موفقیت در سیستم پروکاریوتی کلون و بیان شده است (حامد ناقوسی، 1387).
به دلیل اهمیت بالینی بالا و نیز نیاز گسترده به GCSF در مراقبت های بهداشتی، تلاش های زیادی به منظور تولید مولکولهای مشابه با فرم طبیعی انسانی آن که دارای عملکرد باشند در حال انجام است.
در سالهای گذشته محققین ایرانی سعی در بیان آن در کاهوی تراریخته داشتنه اند چراکه در این سالها گیاهان تراریخته برای تولید انواع داروی نوترکیب و واکسن ها مورد استفاده قرار گرفته اند (مهدی شریفی تبار،1392).

فصل دوم مواد و روش ها
2-1 میکروارگانیسم های مورد استفاده

از باکتری E. coli سویه ‘ TOP10F به منظور کلونینگ و تکثیر پلاسمیدها و از مخمر Hansenula polymorpha سویه RB11 به عنوان میزبان بیانی مخمری استفاده شد.

2-2 محیط های کشت مورد نیاز
جهت رشد باکتری‌ E. coli از محیط کشت LB جامد یا مایع و جهت رشد مخمر از محیطهای کشت YPD جامد یا مایع، BMMY و BMGY استفاده شد (پیوست 1).
پس از آماده نمودن محیط¬های کشت میکروبی مورد نیاز، این محیط ها در دمای 121 درجه سانتیگراد به مدت 15 دقیقه در فشار یک اتمسفر اتوکلاو گردیدند. محلول‌های قندی یا محلولهای حساس به اتوکلاو با استفاده از فیلترهای 22/0 میکرون استریل شدند.

2-3 پلاسمیدهای مورد استفاده
وکتور کلونینگ pGH برای کلون نمودن ژن سنتز شده gcsf توسط شرکت مربوطه مورد استفاده قرار گرفت (شکل 3-1). وکتور بیانی مورد نیاز برای سلولهای مخمری به صورت سنتتیک و با درج عناصر ضروری جهت بیان پروتئین های هترولوگ در این سلولها با استفاده از وکتور کلونینگ pGH به عنوان وکتور اولیه ساخته شده است.

شکل 3-1. وکتور کلونینگ pGH

2-4 آنزیم ها و کیت‌ها
آنزیم Taq DNA polymerase، آنزیم های محدودالأثر، RNaseA و آنزیم T4 DNA ligase از شرکت Fermentas تهیه شدند.
کیت استخراج محصول PCR یا DNA از ژل آگارز از شرکت Roche تهیه گردید.

2-5 آنتی بیوتیکها
آنتی بیوتیک ها (آمپی سیلین، تتراسایکلین و زئوسین) با غلظت مناسب (پیوست 2) تهیه و در 20- درجه سانتیگراد نگهداری شدند.

2-6 روش های عمومی
2-6-1 الکتروفورز افقی محصول PCR و یا نمونه DNA بر روی ژل آگارز
به منظور بررسی نتایج PCR و یا کیفیت هرنوع مولکول DNA، از ژل آگارز استفاده می شود. به همین جهت ابتدا ژل آگارز با غلظت متناسب با سایز مولکول مورد بررسی تهیه می شود. با توجه به ظرفیت کاست ژل، ابتدا پودر آگارز وزن شده و سپس در حجم مشخصی از بافر TAE (پیوست 3) با رقت X1 حل می گردد. این مخلوط به مدت 10 دقیقه در دمای اتاق باقی مانده و سپس مخلوط به مدت 1 دقیقه جوشانده می شود تا به خوبی حل شده و محلول یکنواختی حاصل شود. پس از کاهش دمای محلول تا حدود °C40، به میزان لازم از محلول رنگی DNA Safety Stain به آن اضافه کرده و به آرامی به درون کاست ژل ریخته شده و شانه روی آن قرار داده می شود. پس از چند دقیقه و پس از بستن کامل ژل، شانه به آرامی و به صورت عمودی از داخل آن خارج ‌شده و ژل به همراه کاست در داخل تانک الکتروفورز افقی حاوی بافر TAE (X1) قرار داده می شود. در ادامه نمونه های DNA همراه با حجم مشخصی از بافر بارگذاری ، با ترتیب مشخص به آرامی به درون چاهک ها ریخته می شود. سپس الکترودهای تانک به منبع تغذیه متصل می شود. پس از گذشت مدت زمان مشخص با توجه به اندازه قطعه، جریان برق قطع گشته و ژل از درون کاست خارج می گردد. ژل را در معرض نور فرابنفش قرار داده و باندها را مشاهده می نماییم.
نکته: در صورتی که قرار است DNA از ژل تخلیص شود، به هیچ‌وجه نمی‌بایست به مدت طولانی در معرض اشعه فرابنفش قرار گیرد زیرا این اشعه طول موج پایینی داشته و قادر است در توالی DNA جهش ایجاد کند.
2-6-2 تخلیص محصول هضم آنزیمی با استفاده از کیت تخلیص از ژل آگارز
جهت انجام کلونینگ، تخلیص محصول هضمهای آنزیمی فوق با استفاده از کیت تخلیص از ژل (Roche) و بر اساس پروتوکل موجود در کیت به شرح زیر انجام ‌شد:
1.به ازای هر mg100 ژل آگارز بریده شده ، µl300 بافر 1 (Binding buffer) به هر تیوب اضافه گردید.
2.تیوب ها به مدت 30-15 ثانیه ورتکس شده و سپس به مدت 10 دقیقه در دمای C°56 گرماگذاری شدند.
3.در این مرحله به ازای هر mg100 ژل اولیه، µl150 ایزوپروپانول به تیوب ها اضافه شده وسپس ورتکس گردیدند.
4.محتویات هر تیوب به یکی از ستون های کیت افزوده شده و این مجموعه را با بالاترین سرعت (rpm13000) به مدت 30-60 ثانیه سانتریفوژ نمودیم.
5.مایع زیرین دور ریخته شده و سپس µl500 بافر شستشو به هر ستون اضافه گردید.
6.پس از سانتریفوژ در بالاترین سرعت به مدت 1 دقیقه، مایع زیرین دور ریخته شده و در این مرحله µl250 بافر شستشو مجدداً اضافه گردید.
7.پس از سانتریفوژ به مدت 1 دقیقه (در بالاترین سرعت)، هریک از ستون ها را به تیوب های 5/1 میلی لیتری انتقال داده و µl35 آب دیونیزه به فیلتر ستون ها اضافه کرده و پس از انکوباسیون 5 دقیقه ای در دمای اتاق، هریک از تیوبها را مشابه با مراحل قبلی سانتریفیوژ نمودیم.

2-6-3 واکنش لیگاسیون قطعات تخلیص شده
واکنش لیگاسیون پس از تعیین غلظت وکتور و قطعه الحاقی تخلیص شده از ژل آگارز، بر طبق واکنش مندرج در جداول مربوطه انجام گرفت. در نمونه کنترل منفی، وکتور خطی شده به تنهایی در یک واکنش لیگاسیون وارد گردید. به عبارت دیگر، در این واکنش به جای قطعه DNA، آب دیونیزه به مخلوط واکنش اضافه گردید. تمامی تیوب ها به مدت 16 ساعت (ON) در دمای °C4 گرماگذاری شدند. این دما کمک می‌کند تا تشکیل پیوندهای هیدروژنی بین انتهاهای چسبنده آسان‌تر و با پایداری بیشتری انجام شود و آنزیم لیگاز نیز زمان کافی برای تشکیل پیوند فسفودی‌استری را خواهد داشت.

2-6-4 تهیه سلول‌ های مستعد ‘E. coli TOP10F به روش تیمار با کلرید کلسیم
باکتری مستعد، سلولی است که توانایی لازم برای وارد نمودن پلاسمید به درون خود را پیدا کرده است.
1.یک کلنی از باکتری مورد نظر به مدت 3-2 ساعت در حضور تتراسایکلین در محیط LB مایع و در دمای °C37 بر روی شیکر با سرعت rpm 150 کشت داده شد تا جذب نوری محیط کشت در طول موج nm600 (OD600nm) به 6/0-4/0 رسید.
2.محیط کشت در شرایط استریل (در کنار شعله) به میکروتیوپ استریل منتقل شده و با سرعت rpm9000 به مدت 3 دقیقه سانتریفوژ شد.
3.محیط کشت دور ریخته شده و رسوب سلولی در µl720 کلرید سدیم mM100 سرد استریل، حل شده و به مدت 20 دقیقه در یخ گذاشته شد.

دسته بندی : پایان نامه ها

پاسخ دهید